Icono del sitio Yo Soy Tu Profe

Método de Gauss | Teoría y ejercicios

 

El Método de Gauss consiste en transformar un sistema de ecuaciones lineal en otro escalonado.


Por ejemplo:

El sistema transformado en matriz:

Si te fijas, ya podemos despejar directamente una de las incógnitas. Por tanto, este tipo de sistemas es muy fácil de resolver obteniendo el valor de las incógnitas de abajo hacia arriba. De esta manera, podemos ir sustituyendo los valores obtenidos en las anteriores.

z=2

Sustituimos el valor de “z” en la segunda ecuación y obtenemos el valor de “y”:

y+3.(2)=8;

 y=8-6=2
y=+2

Sustituimos el valor de “z” e “y” en la primera ecuación y obtenemos “x”:

 y=2

x+(2)+3.(2)=-8;

 x=-16

Si nuestro sistema no es un sistema escalonado, lo podemos resolver mediante el método de Gauss. El método consiste en  “hacemos cero”, es decir, sometemos a las ecuaciones a transformaciones elementales:

Para trabajar mejor utilizamos sólo los números (coeficientes y término independiente) y trabajamos con una estructura de matriz.

Ejemplo:

Utilizamos los coeficientes y los términos independientes y realizamos una matriz:

Necesitamos hacer ceros en los números destacados en la matriz anterior.

Primeras transformaciones, deseamos realizar los ceros de la primera columna:

Primer paso, transformar la segunda fila,

  1. Fila uno multiplicada por -3

-3.(+1 +1 +1 +2)=-3 -3 -3 -6

  1. Le sumo la fila 2.

Segundo paso, transformar la tercera fila,

  1. Fila uno multiplicada por +2.

+2.(+1 + 1+1 +2 )=+2 +2 +2 +4

  1. Le sumo la fila 3.

Así, la matriz resultante sería:

Segundas transformaciones, deseamos realizar el ceros de la segunda columna:

Para ello, sólo utilizamos la segunda y tercera fila:

  1. Fila uno se mantiene.
  2. Fila dos se multiplica por 3.

+3.(0 -5 -4 -2)=+0 -15 -12 -6

  1. Fila tres se multiplica por 5.

+5.(0 +3 +4 +6)=0 +15 +20 +30

  1. Sumo la fila dos y tres transformadas.

De esta manera, el sistema resulta:

Siendo la solución:

z=24/8=+3

z=+3

Sustituimos el valor de “z” en la segunda ecuación y obtenemos el valor de “y”:

-5y-4.3=-2
-5y=-2+12
y=+10/-5=-2

 y=-2

Sustituimos el valor de “z” e “y” en la primera ecuación y obtenemos “x”:

x+(-2)+3=+2

x=+2-3+2

x=+1

Puedes ver otro ejercicio resuelto en este videotutorial:

 


Ejercicios resueltos sobre el método de Gauss


metodo-de-gauss-ystp

Si tienes cualquier duda sobre el método de Gauss puedes dejar un comentario en el foro de esta misma entrada. De esta manera, otras personas podrán ver la consulta y la solución correspondiente y así contribuimos a compartir juntos.

¡No lo olvides! Síguenos en las redes 🙂

Facebook,Twitter,Instagram o YouTube

Nos vemos en la siguiente clase.

Quizás te interese….


   

Salir de la versión móvil